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Potential energy surface exploration with equilibrial paths.
Part I: Theory
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The equilibrial path concept is further developed. Special attention is spent the symmetry
conservation along equilibrial paths and symmetry-breaking. Symmetry-breaking can occur
only at singular points. The simple singular points of an equilibrial path are valley–ridge
inflection points. In contrast to the intrinsic reaction paths and the gradient extremal paths, the
equilibrial paths enable to describe the branching of reaction channels.

1. Introduction

Within the classical transition state theory [1] the transition structure of a chem-
ical reaction is determined by a first order saddle point of the energy function. Educt
and product are associated with a minimizer. Thus each theoretical investigation of a
molecular system starts with the computation of the stationary points. Minimizers can
simply be determined by well-working descent procedures. But the computation of sad-
dle points is remained a hard task till today; see, e.g., [2,3]. Since only poor guesses are
available in general, saddle point searches call fornon-localnumerical procedures.

Besides the stationary points the valley–ridge inflection points are of particular
interest for the theoretical description of chemical reactions because they indicate the
branching of a reaction channel on the potential energy surface [4]. They are no distin-
guished points of the energy function or the energy derivatives. Therefore valley–ridge
inflection points can be detected only bynon-local search procedures; cf. [5] and the
literature cited therein. In general the educt and the product of a chemical reaction are
connected with some transition structure by two intrinsic reaction paths [6,7] which start
at the saddle point and lead to the educt and product minimizer.

The valley–ridge inflection points are no distinguished points of the intrinsic re-
action paths. Therefore they can only be detected by monitoring the eigenvalues of the
Hessian matrix along the path [8]. This procedure is, however, very expensive.

Very recently the concept of equilibrial paths has been proposed by the author [9].
Equilibrial paths enable to locate both minimizers and saddle points. At the same time
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they connect an educt with the transition structure or a transition structure with the prod-
uct. The valley–ridge inflection points are distinguished points at equilibrial paths. The
most important properties are the following:

(i) Equilibrial paths can start at a minimizer as well as a saddle point. An equilibrial
path that originates at a minimizer ends at a saddle point (or a plateau of the poten-
tial energy surface). An equilibrial path that starts at a saddle of orderµ leads to a
stationary point of the order(µ− 1) in general.

(ii) The initial search direction can be prescribed such that several saddle points sur-
rounding a given minimizer can be found.

(iii) The simple singular points of an equilibrial path are valley–ridge inflection points.
The additional numerical effort necessary to detect these points is next to nothing.

Thus equilibrial paths are well suited for the exploration of large parts of potential
energy surfaces. They enable to gain an insight into the reaction topography.

In the present paper the concept of equilibrial paths is further developed. The equi-
librial path definition given in section 3 differs in some points from that in [9] because it
considers the observation that bifurcation points are not a rare, but a frequent occurance.
The common idea of a branching reaction channel (cf., e.g., [4]) is met for a certainty
only at the symmetry-breaking simple bifurcation points. In other words, valley–ridge
inflection points may also found in more general bifurcation situations.

Special attention is spent the conservation of symmetry and symmetry-breaking. In
section 4 it is proven that (under certain assumptions) along a regular equilibrial path the
symmetry of a nuclear system is conserved. Symmetry-breaking can occur only at singu-
lar points. In the vicinity of a symmetry-breaking simple bifurcation point the changes in
the potential energy are greater along the symmetric branch than along the nonsymmetric
branches. In other words, in the stage of activation the increase in the potential energy is
less if some symmetry is broken. In the stage of relaxation the decrease in the potential
energy is greater if the symmetry is preserved or some symmetry is gathered. Thus in a
stage of activation a nuclear system will follow a nonsymmetric branch at a valley-ridge
inflection point whereas in a stage of relaxation it will follow the symmetric branch.

In the second part the results of a potential energy surface exploration with equi-
librial paths are presented.

2. Background material

The position vectorspi = (pix, piy , piz)
� ∈ R

3, i = 1(1)n, of then nuclei of
a molecular system are collected in a vectorp = (p1, . . . , pn)�. Thus each nuclear
configuration of a molecular system is described by a vector of the configuration space

P := {
p
∣∣p = (p1, . . . , pn)

�, pi ∈ R3, i = 1(1)n
}
.

The vector spaceP is endowed with the inner product〈·|·〉,

〈p | q〉 :=
n∑
i=1

〈pi | qi〉, p, q ∈ P,
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where〈·|·〉 denotes the inner product onR3. A norm‖·‖ is defined onP by

‖p‖ := √〈p | p〉, p ∈ P.
SinceP is the Cartesian product ofR3-copies, a cross-product can be defined onP by

d × p := (d1 × p1, . . . , dn × pn)
�, d,p ∈ P.

Recall that onR3 the cross-product can be written as

d × p = C(d)p

with the matrix

C(d) :=
( 0 −d3 d2

d3 0 −d1

−d2 d1 0

)
, d = (d1, d2, d3)

�.

Thus

d × p = C(d)p,

whereC(d) is the blocked diagonal matrix built up by the(3,3)-matricesC(di), i =
1(1)n, i.e.,

C(d) := diag
(
C(d1), . . . ,C(dn)

)
.

Since a nuclear ensemble can always be arranged inR
3 so that the barycenter of the

nuclei coincides with the origin, the nuclear configurations of a molecular system are
just described by the vectors of the subspace

P0 :=
{
p ∈ P

∣∣∣∣
n∑
i=1

pi = 0

}

of P. Below nuclear configurations are always described by a vector ofP0. The vectors
of the subspace

L0(d) := {p ∈ P0 | pi = αid}, 0 �= d ∈ R3,

of P0 represent the collinear configurations while the vectors of the direct sum

L0(d1, d2) := L0(d1)⊕ L0(d2), d1 × d2 �= 0,

represent the planar configurations. If the vectorsdi , i = 1(1)3, form a base inR3, then

P0 = L0(d1) ⊕ L0(d2)⊕ L0(d3).

The vectors of the three-dimensional subspace

T := {
d ∈ P | d = (d1, . . . , dn)

�, di = d ∈ R3, i = 1(1)n
}
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of P describe the overall translations of a nuclear ensemble inR
3. Since for anyp ∈ P0

and anyd ∈ T the inner product〈p | d〉 vanishes, the vector spaceP is the direct sum
of its subspacesP0 andT, i.e.,

P = P0 ⊕ T.
The vectors of the subspace

S(p) := {q ∈ P | q = d × p, d ∈ T}, p ∈ P,
of P describe the infinitesimal rotations of the configurationp about an axisd. If p ∈ P0

thenS(p) ⊂ P0 and dimS(p) = 3 for all non-collinear configurationsp [9].
In the present paper the energy function E :P �→ R is assumed to be thrice con-

tinuously differentiable. The gradient and the Hessian matrix of E at a pointp ∈ P are
denoted byg(p) andH (p), respectively. Some important properties are summarized in
the next theorems.

Theorem 1 [9]. For anyp ∈ P the following relations are valid:

(a) g(p) ∈ P0,

(b) g(p)× p ∈ P0,

(c) H (p)d = 0 ∀d ∈ T,

(d) H (p)(d × p) = d × g(p) ∀d ∈ T.

Notice that statement (c) impliesH (p)P ⊆ P0.

Theorem 2 [9]. For anyp ∈ P0 the following inclusions are valid:

(a) kerH (p) ∩ P0 ⊆ (T⊕ S(g(p)))⊥,

(b) H (p)(T⊕ S(g(p)))⊥ ⊆ (T⊕ S(p))⊥.

Recall that⊥ indicates the orthogonal complement of a subspace inP.
A point p0 ∈ P which satisfies the conditiong(p0) = 0 is astationary pointof the

energy function E. The set of all stationary points of E is denoted byg−1(0). By virtue
of theorem 1(c), (d)

T+ S(p) ⊆ kerH (p) ∀p ∈ g−1(0).

The kernel of a Hessian matrixH (p), which is denoted by kerH (p), coincides with the
eigenspace that belongs to the zero eigenvalue ofH (p). A point p ∈ g−1(0) is called
pseudo-regularif kerH (p) = T+ S(p).

A stationary pointp0 is a saddle point of orderk, k � 1, if the Hessian matrix
H (p0) possessesk negative eigenvalues. A stationary pointp0 is a minimizerif there
is a neighborhoodUδ of p0 such that E(p0) � E(p) for all p ∈ Uδ. At a minimizer all
eigenvalues of the Hessian matrix are non-negative.
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3. Concept of equilibrial paths

The equilibrial path concept, which is explained in detail in [9], requires the subdi-
vision of a reactive process into two stages: a stage of activation and a stage of relaxation.
The latter may consist of several substages. Astage of activationis characterized by the
eductm and an excitation vectore ∈ (T⊕ S(m))⊥ which is associated with some vibra-
tional modes of the educt. A (sub)stage of relaxation ischaracterized by a saddle point
structures and a transition vectort ∈ (T ⊕ S(s))⊥. Here the term transition vector is
used in a more general sense as is the convention. It is also defined for saddle points of
higher than first order. Thus transition vector means a linear combination of eigenvectors
or projected normal mode vectors that belong to a negative eigenvalue or a imaginary
frequency, respectively. Excitation and transition vectors are always normalized.

Within a stage of activation or a (sub)stage of relaxation the motion of a nuclear
ensemble is described by the equation [9]

Mp̈ = −g(p)+ �(p)

‖ṗ‖
(
r − 〈ṗ | r〉

‖ṗ‖2
ṗ

)
, ‖ṗ‖ �= 0. (1)

The vectorr stands for an excitation vector if the equation is associated with a stage
of activation while it stands for a transition vector if equation (1) is associated with a
(sub)stage of relaxation. It is called areaction vectorin the following. Theactivation
function�, which is not specified here, is a non-negative, differentiable function which
is invariant with respect to the overall translations/rotations of a nuclear ensemble. Fur-
thermore it is required that�(p) = 0 for all stationary pointsp of E. The activation
function provides some activation power.M denotes the mass hypermatrix.

The idea behind equation (1) is that within the semiclassical framework

(i) each nuclear configurationp is associated with some activation power�(p) and

(ii) the deformations of a nuclear skeleton are caused by two contrary acting forces,
namely anactivation forceand arelaxation force.

The activation force which is defined by the rightmost term in equation (1) gives rise to
bond fissions whereas the relaxation force which is given by the negative gradient of the
potential energy works towards bond preservation and bond formation.

3.1. Definition of equilibrial paths

The equilibrial paths are strict connected with the quasi-stationary solutions of
equation (1). Each point(p∗, ρ∗), ρ∗ �= 0, of the set

E1 := {
(p, ρ) ∈ P0 × [0,∞) | g(p) − ρr = 0

}
is associated with a family

p(t) = p∗ + td, d ∈ T, ‖d‖ = �(p∗)/ρ∗,
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of quasi-stationary solutions of equation (1). Along a quasi-stationary solution the re-
laxation force and the activation force are balanced. Each point(p∗,0) of the subset

E0 := {
(p, ρ) ∈ E1 | ρ = 0

}
of E1 is associated with a family

p(t) = p∗ + td, d ∈ T\{0},
of stationary solutions of equation (1). Along a stationary solution the relaxation and
activation force vanish. The setE0 is the set of the boundary points ofE1. It is closely
related to the stationary points of the energy function E:

p ∈ g−1(0) ∩ P0 ⇐⇒ (p,0) ∈ E0.

The setE1 is a subset of the zero set ofany functionh1(·; b1, b2, b3),

h1(z; b1, b2, b3) := g(p)− ρr +
3∑

i=1

〈p | bi〉bi , z = (p, ρ),

where the vectorsbi, i = 1(1)3, are linearly independent vectors ofT.

Lemma 1 [9]. For any base{bi}3
i=1 of T

E1 = h−1
1 (0; b1, b2, b3) ∩ (P0 × [0,∞)

)
.

Definition. A point z ∈ P×R is aregularpoint of a continuously differentiable function
h :P × R �→ P if the Jacobian matrixh′(z) = dh(z)/dz has maximal rank. A point is
calledsingular if it is not regular. The set of all regular points ofh is denoted byR(h).

Proposition 1. A point z = (p, ρ) ∈ P × R is a regular point of the function
h1(·; b1, b2, b3) if one of both conditions is fulfilled:

(i) kerH (p) ∩ P0 = {0},
(ii) there is a vectorv0 ∈ P0, v0 �= 0, such that kerH (p) ∩ P0 = span{v0} and

〈v0 | r〉 �= 0.

Proposition 1 results from the equation

h′
1(z; b1, b2, b3) =

(
H (p)+

3∑
i=1

bib
�
i − r

)

in conjunction with theorem 1(c).
By virtue of proposition 1 a pointz ∈ P×R is either a regular or a singular point of

all functionsh1(·; b1, b2, b3). The points of the setE0 are always singular points because
S(p) ⊂ kerH (p) ∩ P0 for all p ∈ g−1(0) ∩ P0.
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Lemma 2. The setM := E1 ∩ R(h1) is a one-dimensional manifold, i.e., the compo-
nents ofM are diffeomorphic to either the unit circle or the open interval(0,1).

Lemma 2 is a consequence of the Global Rank Theorem; cf. [10, p. 176].
For any(p, ρ) ∈ E1\E0 and anyd ∈ T

〈p | d × r〉 = ρ−1
〈
p | d × g(p)

〉 = −ρ−1
〈
d | p × g(p)

〉 = 0

by theorem 1(b). HenceE1\E0 ⊂ (S(r)⊕ T)⊥ × (0,∞). The vector space

Pr := (
S(r)⊕ T)⊥

is a(3n− 6)-dimensional subspace ofP0 if

(R) the reaction vectorr includes two subvectorsri and rj , 1 � i, j � n, such that
ri × rj �= 0.

If condition (R) is not fulfilled, i.e., all subvectors of the reaction vector are parallel,
then dimPr = 3n− 5; cf. [9].

The equilibrial path concept is based on the set

E2 := E1 ∩ (Pr × [0,∞)
)

which includes the one-dimensional manifoldM and some limit points ofM.

Definition. Each continuous curvez(τ ) = (p(τ ), ρ(τ)), τ � 0, in the setE2 is called
anequilibrial path. If p(0) is a minimizer (saddle point) thenz(τ ) is anactivation path
(a relaxation path).

Equilibrial paths are no paths on potential energy surfaces. Along an equilibrial
path the relationρ(τ) = ‖g(p(τ ))‖ holds. Thus equilibrial paths are paths on surfaces
generated by the functionσ (p) = ‖g(p)‖.

The setE2 is contained in the zero set of the function

h2(z; b1, b2, b3) := h1(z; b1, b2, b3)+
3∑

i=1

〈p | bi × r〉(bi × p), z = (p, ρ).

The vectorsbi × p, i = 1(1)3, are linearly independent ifp represents a non-collinear
configuration. The term added to the functionh1 excludes all points of the setE0 which
do not belong to the vector spacePr×R, from the setE1. This way the continuous curves
in the setE1\E0 which approach the boundary setE0 are continued into the setE0 in a
unique manner. The unique continuability is of particular importance for the numerical
path tracing.

Lemma 3. For any base{bi}3
i=1 of T

h−1
2 (0; b1, b2, b3) ∩ (P× [0,∞)

) = E2.



98 W. Kliesch / Potential energy surface exploration I

The proof is omitted here because it follows the proof of [9, lemma 4.4].
Now the question is whether a regular point of a functionh2(·; b1, b2, b3) remains

a regular point if the base{bi}3
i=1 of T is changed. To answer this question some infor-

mation about the Jacobian matrices of the functionsh2(·; b1, b2, b3) is needed.
For anyz = (p, ρ) ∈ Pr × R the Jacobian matrixh′

2(z; b1, b2, b3) has the form

h′
2(z; b1, b2, b3) = (

H 2(z; b1, b2, b3) − r
)
, (2)

where

H 2(z; b1, b2, b3) = H (p)+
3∑

i=1

bib
�
i +

3∑
i=1

(bi × p)(bi × r)�. (3)

This observation proves

Proposition 2. A point z = (p, ρ) ∈ Pr × R is a regular point of the function
h2(·; b1, b2, b3) if one of both conditions is satisfied:

(i) H 2(z; b1, b2, b3) is a regular matrix,

(ii) dim kerH 2(z; b1, b2, b3) = 1 andr /∈ rangeH 2(z; b1, b2, b3).

Considering theorem 1(d)

(bi × p)(bi × r)� = ρ−1(bi × p)
(
bi × g(p)

)�
= ρ−1(bi × p)

(
H (p)(bi × p)

)�
= ρ−1(bi × p)(bi × p)�H (p),

for all (p, ρ) ∈ E2\E0. Thus equation (3) results in

H 2(z; b1, b2, b3) =
3∑

i=1

bib
�
i + Bρ(p; b1, b2, b3)H (p) (4)

for z = (p, ρ) ∈ E2\E0, where

Bρ(p; b1, b2, b3) := I + ρ−1
3∑

i=1

(bi × p)(bi × p)�.

I denotes the identity matrix. Observe that the matrixH 2(z; b1, b2, b3) is symmetric for
all z ∈ E2\E0.

Proposition 3. Forρ > 0

(a) Bρ(p; b1, b2, b3) is a regular matrix,

(b) Bρ(p; b1, b2, b3)P0 ⊆ P0,

(c) Bρ(p; b1, b2, b3)r = r ∀p ∈ Pr .
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Proof. (a) Each vectorv ∈ P can be written as a sum of a vectorv1 ∈ S(p)⊥ and a
vectorv2 ∈ S(p). Thus

Bρ(p; b1, b2, b3)v = v1 + v2 + ρ−1
3∑

i=1

〈bi × p|v2〉(bi × p).

Hencev belongs to the kernel of the matrixBρ(p; b1, b2, b3) if and only if v1 = 0 and
v2 + ρ−1∑3

i=1〈bi × p|v2〉(bi × p) = 0. The last equation implies the condition

ρ = −‖v2‖−2
3∑

i=1

〈bi × p|v2〉2 < 0

which is a contradiction to the assumptionρ > 0. ThusBρ(p; b1, b2, b3) is a regular
matrix for allρ > 0.

(b) If v ∈ P0 thenBρ(p; b1, b2, b3)v ∈ P0 becausebi × p ∈ P0, i = 1(1)3, for
p ∈ P0.

(c) If p ∈ Pr then 〈bi × p | r〉 = −〈bi × r | p〉 = 0, i = 1(1)3. Therefore
Bρ(p; b1, b2, b3)r = r . �

The next lemma answers above question.

Lemma 4. If z = (p, ρ) ∈ E2 then for any base{bi}3
i=1 of T

kerh′
2(z; b1, b2, b3) = {

(v, µ) ∈ Pr × R | H (p)v = µr
}
.

Proof. The kernel of the Jacobian matrixh′
2(z; b1, b2, b3) consists of all vectorsy =

(v, µ) ∈ P× R which fulfil the equation

h′
2(z; b1, b2, b3)y = 0. (5)

(i) z ∈ E2 ∩ E0. Considering equation (2) the equation

0 = (
H (p)v − µr

)+
3∑

i=1

〈bi | v〉bi +
3∑

i=1

〈bi × r | v〉(bi × p) (6)

results from equation (5). BecauseH (p)v ∈ (T ⊕ S(p))⊥ for anyv ∈ P by theorem
1(c), (d), the right hand side of equation (6) vanishes if and only if the three terms vanish
simultaneously. In other words,(v, µ) belongs to kerh′

2(z; b1, b2, b3) if and only if
H (p)v − µr = 0 andv ∈ Pr .

(ii) z = (p, ρ) ∈ E2\E0.
Considering equation (4) and proposition 3(c) the equation

0 =
3∑

i=1

〈bi | v〉bi + Bρ(p; b1, b2, b3)
(
H (p)v − µr

)
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is obtained from equation (5). Because of proposition 3(b) both right hand terms vanish.
By virtue of proposition 3(a) the matricesBρ(p; b1, b2, b3) are regular, such that the
equivalence relation

(v, µ) ∈ kerh′
2(z; b1, b2, b3) ⇐⇒ (H (p)v − µr = 0) ∧ v ∈ P0

is valid. If µ �= 0 then by theorem 1(b), (d)

0= 〈r × p | d〉 = µ−1〈d × p | H (p)v
〉 = µ−1〈d × g(p) | v〉

= ρµ−1〈d × r | v〉
for anyd ∈ T. Hencev ∈ Pr . If µ = 0 thenv ∈ Pr by theorem 2(a). This observation
completes the proof. �

A consequence of lemma 4 is that a pointz ∈ E2 is either a regular or a singular
point ofall functionsh2(·; b1, b2, b3). Thus the set

Ereg := {
z ∈ E2 | z ∈ R(h2(·; b1, b2, b3)

)}
is well defined. An equilibrial path is calledregular if it is contained in the setEreg.

The next lemma supplies information about the dimension of the set of singular
points. It is a consequence of Sard’s lemma; cf. [10, p. 186].

Lemma 5. The setE2\Ereg has the Lebesgue measure zero.

Unless otherwise said, below the baseui = (ui , . . . , ui )�, i = 1(1)3, is chosen for
the subspaceT, where

u1 = (1,0,0)�, u2 = (0,1,0)�, u3 = (0,0,1)�.

For simplicity we writeh2 instead ofh2(·;u1,u2,u3),H 2(z) instead of
H 2(z;u1,u2,u3), etc. in the following.

3.2. Some properties of equilibrial paths

In the present subsection some basic properties of the equilibrial paths are proven.
Particularly it is shown that the regular equilibrial paths coincide with certain trajectories
of an ordinary differential equation.

Definition. If z is a regular point of the functionh2 then the unique solution of the
system of equations

h′
2(z)t = 0, (7)

‖t‖ = 1, (8)

sign det

(
h′

2(z)
t�

)
= ν = const (9)

is called thetangent vectorinduced by the matrixh′
2(z). It is denoted bytν(h′

2(z)).
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The solutionc(s) = (p(s), ρ(s)) of the initial value problem

ż = tν
(
h′

2(z)
)
, ν = const, (10)

z(0) = z0, z0 ∈ Ereg, (11)

is a curve of regular points in the zero seth−1
2 (0); cf. [11]. If ν = 1, the trajectory

follows the positive direction. It follows the negative direction ifν = −1. By virtue of
condition (8) the solution curvesc(s) are parametrized with respect to the arclengths.
The following theorem results from [12, lemma 2.1.12].

Theorem 3. Each regular equilibrial path is a segment of a solution curve of the initial
value problem (10)–(11).

Thus the setEreg consists of regular equilibrial paths and single regular pointsz∗ ∈
E0 which are a turning point of a curve contained in the seth−1

2 (0) ∩ (P0 × (−∞,0]);
see figure 1.

If z0 ∈ E0 ∩ Ereg, the solution curve of the initial value problem (10)–(11) includes
an equilibrial path ifρ̇(0) > 0, i.e., if the initial tangent belongs to the setPr × (0,∞).
If ρ̇(0) = 0, the solution curve need not include an equilibrial path. In figure 1 the point
z∗ ∈ E0 ∩ Ereg with ż∗ = (ṗ∗,0) determines a trajectory which is completely contained
in the setPr × (−∞,0]. The equation [11]

ρ̇ det

(
h′

2(z)
tν(h′

2(z))
�

)
= detH 2(p), z = (p, ρ), (12)

shows in conjunction with condition (9) that

ρ̇(0) > 0 if ν = sign detH 2(p0) �= 0.

Figure 1. Zero set of a functionh2.



102 W. Kliesch / Potential energy surface exploration I

Thereforeν = sign detH 2(p0) is chosen from now on. The lower indexν of the
tangent vectors is omitted below. The next lemma provides a condition which guarantees
that a matrixH 2(z0), z0 ∈ E0, is regular.

Lemma 6. Supposez0 = (p0,0) ∈ E0. Then the matrixH 2(z0) is regular if both
conditions are satisfied:

(i) The Hessian matrixH (p0) is pseudo-regular.

(ii) The matrix

U(p0, r) :=
( 〈u1 × p0 | u1 × r〉 〈u1 × p0 | u2 × r〉 〈u1 × p0 | u3 × r〉

〈u2 × p0 | u1 × r〉 〈u2 × p0 | u2 × r〉 〈u2 × p0 | u3 × r〉
〈u3 × p0 | u1 × r〉 〈u3 × p0 | u2 × r〉 〈u3 × p0 | u3 × r〉

)

is regular.

If the matrixU(p0, r) is singular then the matrixH 2(z0) is also singular.

Proof. For each vectorv ∈ P there are a vectorv1 ∈ S(p0)
⊥ and a vectorv2 =

(d × p0) ∈ S(p0) such thatv = v1 + v2 and

H 2(z0)v =
(
H (p0)+

3∑
i=1

uiu
�
i

)
v1 +

3∑
i=1

〈ui × r | v〉(ui × p0). (13)

The first term of the right hand side is a vector ofS(p0)
⊥ while the rightmost term

is a vector ofS(p0). If v1 �= 0 thenH 2(p0)v �= 0 because of condition (i). Ifv1 = 0
thenH 2(p0)v �= 0 for v �= 0 if and only if

(C) for each vectord ∈ T, d �= 0, there is an indexi∗, 1 � i∗ � 3, such that
〈ui∗ × r | d × p0〉 �= 0.

Since ford = ∑3
j=1 γjuj

〈ui × r | d × p0〉 =
3∑

j=1

γj 〈ui × r | uj × p0〉,

condition (C) is fulfilled if and only if the right hand side of the equation

U(p0, r)(γ1, γ2, γ3)
� = (α1, α2, α3)

�, αi = 〈ui × r | d × p0〉,
differs from zero for all non-vanishing vectors(γ1, γ2, γ3)

� ∈ R3. In other words, con-
dition (C) is fulfilled if and only if the matrixU(p0, r) is regular.

If the matrixU(p0, r) is singular, then there is a vectord∗ ∈ kerU(p0, r), d∗ �= 0,
for whichd∗ × p0 ∈ kerH 2(z0), d∗ = (d∗, . . . , d∗)�. �

If the initial configurationp0 is collinear or planar, then the matrixH 2(z0) is al-
ways singular if the reaction vector is chosen in a special manner.

Proposition 4. Supposez0 = (p0,0) ∈ E0 and〈r | p0〉 = 0.
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(a) If r ∈ L0(u1, u2), then the cross-productu3 ×p0 belongs to the kernel of the matrix
H 2(z0), i.e.,H 2(z0) is singular.

(b) If r ∈ L0(u3), thenuj × p0 ∈ kerH 2(z0) for j = 1,2.

Proof. By virtue of equation (13) a vectoruj × p0 belongs to the kernel of the matrix
H 2(z0) if and only if 〈uj × p0 | ui × r〉 = 0 for i = 1(1)3. Considering Lagrange’s
identity [13]

〈uj × p0 | ui × r〉 = 〈uj | ui〉〈p0 | r〉 −
n∑

k=1

〈p0k | ui〉〈rk | uj 〉.

If r ∈ L0(u1, u2), then〈rk | u3〉 = 0 for all subvectorsrk. On the other hand, ifr ∈
L0(u3), then〈rk | uj 〉 = 0 for k = 1(1)n andj = 1,2. �

Each planar configuration possessesn−3 vibrational modes that act perpendicular
to the plane in which the nuclei are lying [9]. By virtue of proposition 4 the accompany-
ing normal mode vectors are an unsuitable choice for the reaction vector.

Theorem 4. A regular, non-closed equilibrial path of finite length either ends at a point
of the boundary setE0 or converges to a singular point of the functionh2.

Proof. Suppose the equilibrial pathz(s) is a segment of the solution curvec(s) of the
initial value problem (10), (11). Let(a, b), a < 0 < b, be the maximal interval of
existence of the solution curvec(s). If b < ∞ then the curvec(s) converges to a limit
point z∗ ass → b, s < b which is a singular point of the functionh2 [11]. The maximal
interval of existence of the equilibrial pathz(s) is contained in the interval(a, b).

Case 1: The solution curvec(s) does not leave the setPr × [0,∞) for s � 0, i.e.,
z(s) ∈ Pr × (0,∞) for all s > 0. Sincez(s) is of finite length by assumption,z(s) is a
closed curve or it converges to a singular point of the functionh2. But closed curves are
excluded by assumption.

Case 2: The solution curvec(s) leaves the setPr ×[0,∞) (for the first time) at the
point c(s∗) ∈ E0. Then the equilibrial pathz(s) is of finite length and ends at the point
c(s∗). �

Equilibrial paths of infinite length occur when the pathp(s) runs into a domain
where the energy surface is almost flat (plateau of an energy mountain).

Definition. An equilibrial pathz(s) that joins two pointsz0 andz1 of the setE0 is called
proper if

(i) z(s) is a regular equilibrial path,

(ii) the pointsz0 andz1 are the only curve points that belong toE0,

(iii) detH 2(zi) �= 0, i = 0,1.
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Theorem 5 [9]. Supposez(s) = (p(s), ρ(s)) is a proper equilibrial path that starts at
the pointz0 = (p0,0) and ends at the pointz1 = (p1,0).

(a) If p0 is a minimizer thenp1 is a saddle point or a maximizer.

(b) If p0 is a saddle point thenp1 is also a saddle point or a minimizer.

A proper equilibrial path that originates at a minimizer need not end at a saddle
point of first order.

Along a regular equilibrial pathz(s) = (p(s), ρ(s)) the relation

dE(p(s))

ds
= 〈

g
(
p(s)

) | ṗ(s)〉 = ρ(s)
〈
r | ṗ(s)〉

= ρ(s) cosϕ(s)
√

1 − ρ̇2(s) (14)

holds, whereϕ(s) denotes the angle between the reaction vectorr and the tangenṫp(s).
Thus the potential energy is a monotonically increasing (decreasing) function along the
pathp(s) as long as the condition cosϕ(s) > 0 (cosϕ(s) < 0) is fulfilled. A curve point
p(s∗) at which the inner product〈r | ṗ(s∗)〉 vanishes is a minimizer, a maximizer, or an
inflection point of the function E(p(s)).

Theorem 6 [9].Supposez(s) = (p(s), ρ(s)) is a regular equilibrial path along which
cosϕ(s) �= 0 for all s.

(a) If the initial pointp(0) is a minimizer then the potential energy is monotonically
increasing alongp(s).

(b) If the initial pointp(0) is a saddle point then the potential energy is monotonically
decreasing alongp(s).

3.3. Distinguished points at equilibrial paths

Distinguished points at a regular, non-closed equilibrial path of finite length are the
initial point, the turning point(s) and the final point. By theorem 4 the final point is either
a singular point (which is not a point of the path but only a limit point) or a regular point
of the boundary setE0. The first turning point encountered along a regular activation
path indicates the entry into the reactive domain [9]. A regular relaxation path that ends
at a minimizer enters the product valley at the turning point encountered at last. The
singular points are of particular interest because they are connected with the branching
of reaction channels.

Definition. A point z∗ = z(s∗) of a regular equilibrial pathz(s) = (p(s), ρ(s)) is a
turning pointif the derivativeρ̇(s) changes its sign ats∗.

By virtue of equation (12) the matrixH 2(p) becomes singular at a turning point.
Because turning points are regular points of the functionh2, case (b) of proposition 2 is
met at a turning point.
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Theorem 7 [9]. Each regular equilibrial path that joins two points of the boundary setE0

possesses at least one turning pointztp = (ptp, ρtp). At ztp one and only one eigenvalue
of the Hessian matrixH (ptp) changes its sign.

Definition. A singular point z∗ ∈ Pr × R of the function h2 is called simple if
dim kerH 2(z∗) = 1. The pointz∗ is adoublesingular point if dim kerH 2(z∗) = 2.

If z∗ is a simple singular point then the vector that spans the kernel of the matrix
H 2(z∗) is perpendicular to the reaction vector by proposition 2. The simple singular
points of the functionh2 are closely related to the valley–ridge inflection points.

Definition [4]. A non-stationary pointp∗ is avalley–ridge inflection pointif

dim
(
kerH (p∗) ∩ P0

) = 1 and g(p∗) ∈ ( kerH (p∗)
)⊥
.

Lemma 7. If the pointz∗ = (p∗, ρ∗) ∈ E2\E0 is a simple singular point of the function
h2 thenp∗ is a valley–ridge inflection point.

Proof. The relation

kerH 2(z) = kerH (p) ∩ P0, z = (p, ρ),

results from equation (4) in conjunction with proposition 3(b). Thus

dim
(
kerH (p∗) ∩ P0

) = dim kerH 2(z∗) = 1.

Sincez∗ ∈ E2, the gradientg(p∗) = ρ∗r belongs to(kerH (p∗))⊥. �

4. Symmetry

The symmetry of a nuclear ensemble is described by a regular blocked matrix

S =

S11 . . . S1n

...
. . .

...

Sn1 . . . Snn


 , Sij ∈ O(3),

which satisfies the following assumption:

(S) For any indexi, 1 � i � n, there is an indexj∗, 1 � j∗ � n, such thatSij∗ = S ∈
O(3) andSij = O for all j �= j∗.

O(3) is the group of the orthogonal(3,3)-matrices. The set of all(3n,3n)-matrices
which satisfy assumption (S) is denoted byS.

By differentiating the equation

E(p) = E(Sp)
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the following identities are obtained:

g(Sp) = Sg(p), H (Sp) = SH (p)S�.

Definition. A vector p ∈ P is calledsymmetricwith respect to a matrixS ∈ S if
Sp = p.

The symmetric matrices ofS are collected in the subset

S0 := {
S ∈ S | S2 = I

}
of S. Since the eigenvalues of a matrixS ∈ S0 equal either 1 or−1, for each matrix
S ∈ S0 there exist two eigenspaces, namely the subspaces

Ps := {p ∈ P | Sp = p} and Pa := {p ∈ P | Sp = −p}
of P. The vectors ofPa are calledantisymmetricwith respect to the matrixS. Since any
two non-vanishing vectorsp ∈ Ps andq ∈ Pa are orthogonal,P is the direct sum of the
subspacesPs andPa,

P = Ps ⊕ Pa.

Proposition 5. For any two vectorsd, p ∈ R3 the following relation is valid:

S(d × p) = detS(Sd × Sp), S ∈ O(3).

Proof. SinceS(d × p) = [SC(d)S�]Sp andSd × Sp = C(Sd)Sp, it suffices to prove
that

C(Sd) = (detS)SC(d)S�. (15)

Let si be theith row of the matrixS. Then the following straightforward calculation
proves equation (15):

SC(d)S� = S(d × s1 d × s2 d × s3)

=
( 〈s1 | d × s1〉 〈s1 | d × s2〉 〈s1 | d × s3〉

〈s2 | d × s1〉 〈s2 | d × s2〉 〈s2 | d × s3〉
〈s3 | d × s1〉 〈s3 | d × s2〉 〈s3 | d × s3〉

)
= C(d̃),

where

d̃ =
(
(s2 × s3)

�
(s3 × s1)

�
(s1 × s2)

�

)
d =

(
(s2 × s3)

�
(s3 × s1)

�
(s1 × s2)

�

)
S�Sd = (detS)Sd.

Recall that〈s1 | s2 × s3〉 = detS; cf., e.g., [13]. �

Proposition 5 proves the identity

S(d × p) = detS(Sd × Sp), S ∈ S0. (16)
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Proposition 6. Supposep0 ∈ P0 is a stationary point withCs-symmetry. If the reaction
vectorr isCs-antisymmetric, thenuj ×p0 ∈ kerH 2(z0), j = 1,2, wherez0 = (p0,0).

Proof. Without loss of generality we may assume that the plane of reflection is spanned
by the vectorsu1 andu2 such thatS = diag(1,1,−1). By virtue of equation (16) the
vectorsui × p0, i = 1,2, are antisymmetric whereas the vectoru3 × p0 is symmetric.
On the other hand the vectorsui × r, i = 1,2, are symmetric while the vectoru3 × r is
antisymmetric. Thus

H 2(z0)(uj × p0) = 〈u3 × r | uj × p0〉(u3 × p0), j = 1,2;
cf. equation (13). It is easy to verify that

〈u3 × r | uj × p0〉 = −
n∑

k=1

〈p0k | u3〉〈rk | uj 〉, j = 1,2.

If 〈p0k | u3〉 �= 0 then there is an indexl such that〈p0l | u3〉 = −〈p0k | u3〉 because
of theCs-symmetry. On the other hand〈rk | uj 〉 = 〈rl | uj 〉 for j = 1,2, sincer is
antisymmetric. Thus〈u3 × r | uj × p0〉 = 0 for j = 1,2. �

4.1. Symmetry conservation

In the present subsection it is proven that along a regular equilibrial path the sym-
metry is conserved if the reaction vector is symmetric. For the proof the following
proposition is needed:

Proposition 7. If the reaction vectorr is symmetric with respect to the matrixS ∈ S,
then

Sh2(p, ρ; b1, b2, b3) = h2(Sp, ρ;Sb1,Sb2,Sb3). (17)

The proof is straightforward. Therefore it is omitted.

Theorem 8. Supposez(s) = (p(s), ρ(s)) is a regular equilibrial path that starts at the
point z(0) = (p0,0) ∈ E0 ∩ Ereg. If p0 is symmetric and the reaction vectorr has the
same symmetry asp0, then the symmetry is conserved along the curvep(s).

Proof. The curvep(s) of an equilibrial pathz(s) = (p(s), ρ(s)) is the limit of a se-
quence of Euler polygonspτ (s), τ ∈ (0, δ), δ % 1; cf. [14]. Thus the symmetry is
conserved alongp(s) if this property holds for all Euler polygonspτ (s). Along an Euler
polygon the symmetry is conserved if all nodes

pk+1 = pk + τ ṗk, k = 0,1, . . . ,

are symmetric. Thus it remains for us to prove that a tangentṗk is symmetric if the
configurationpk is symmetric.



108 W. Kliesch / Potential energy surface exploration I

Along an equilibrial path the tangent vectorst(h′
2(z; b1, b2, b3)) = (ṗ, ρ̇)� satisfy

the equation

h′
2(p, ρ; b1, b2, b3)

(
ṗ

ρ̇

)
= 0. (18)

By differentiating equation (17) the equation

h′
2(p, ρ; b1, b2, b3) = S�h′

2(Sp, ρ;Sb1,Sb2,Sb3)

(
S 0
0� 1

)

is obtained and equation (18) can be rewritten as follows:

S�h′
2(Sp, ρ;Sb1,Sb2,Sb3)

(
S 0
0� 1

)(
ṗ

ρ̇

)
= 0.

If p is symmetric, then(
S 0
0� 1

)(
ṗ

ρ̇

)
= µ

(
ṗ

ρ̇

)
, µ ∈ R\{0},

by lemma 4. HenceSṗ = µṗ andρ̇ = µρ̇. The proof is complete if we have shown
thatµ = 1.

If ρ̇ �= 0 thenµ equals 1. Ifρ̇ = 0 thenz = (p, ρ) is a turning point of the
equilibrial path and case (b) of proposition 2, which implies〈r | ṗ〉 �= 0, is met. Since
‖ṗ‖ = 1 by equation (8), the relation

0 �= µ〈r | ṗ〉 = 〈r | Sṗ〉 = 〈S�r | ṗ〉 = 〈r | ṗ〉
shows thatµ = 1. �

4.2. Symmetry-breaking

Only symmetries that are described by a matrixS ∈ S0 are considered in the
present section. The reaction vectorr is assumed to be symmetric. BecauseST ⊆ T,
the vectorsbi, which form the base ofT, can always be chosen so thatSbi = ±bi ,
i = 1(1)3.

Lemma 8. Suppose the reaction vectorr and the position vectorp are symmetric with
respect to the matrixS ∈ S0. If λ is a single eigenvalue of the matrixH 2(p; b1, b2, b3),
Sbi = ±bi , then the eigenvector belonging toλ is either symmetric or antisymmetric.

Proof. A straightforward calculation shows that

SH 2(p; b1, b2, b3)S = H 2(Sp; b1, b2, b3).

If v is the eigenvector that belongs to the eigenvalueλ then

λv = H 2(p; b1, b2, b3)v and λSv = H 2(p; b1, b2, b3)Sv



W. Kliesch / Potential energy surface exploration I 109

such thatSv = µv. Because the matrixS has only the eigenvalues 1 and−1, the
eigenvectorv is either symmetric or antisymmetric. �

At a simple singular pointz∗ = (p∗, ρ∗) of the functionh2 the kernel of the matrix
H 2(z∗) is spanned by a non-vanishing vectorφ0 ∈ P which is called akernel vector.
A kernel vector is always perpendicular to the reaction vector by proposition 2. By virtue
of lemma 8φ0 is either symmetric or antisymmetric. Furthermore there is a (uniquely
determined) vectorv0 ∈ Ps which satisfies the equation

H 2(z∗)v0 = r. (19)

Definition. A simple singular pointz∗ = (p∗, ρ∗) ∈ E2 with symmetricp∗ is called
symmetry-breakingif kerH 2(p∗) ⊂ Pa.

At a symmetry-breaking simple singular pointz∗ = (p∗, ρ∗) the setE2 con-
sists locally of two smooth transversally intersecting branches,Cs ⊂ Ps × [0,∞) and
Ca ⊂ Pa × [0,∞), with the following representation [15]:

Cs =
{
(p, ρ) ∈ E2 | p = p∗ + ξv0 + w1(ξ), ρ = ρ∗ + ξ, |ξ | < δ

}
,

Ca = {
(p, ρ) ∈ E2 | p = p∗ + ξφ0 + w2(ξ), ρ = ρ∗ + O(ξ2), |ξ | < δ

}
,

where‖wi (ξ )‖ = O(ξ2), i = 1,2.

Theorem 9. In the vicinity of a simple symmetry-breaking singular pointz∗ ∈ E2 the
changes in the potential energy are greater along the symmetric pathCs than along the
antisymmetric pathCa.

Proof. At the pointz∗ = (p∗, ρ∗) ∈ E2 the Taylor expansion of the energy function E
provides the relations

E(p)− E(p∗)= ρ∗
(
ξ 〈r | v0〉 + 〈

r | w1(ξ)
〉)+ O

(
ξ2
) = O(ξ), (p, ρ) ∈ Cs,

E(p)− E(p∗)= ρ∗
〈
r | w2(ξ)

〉+ O
(
ξ2) = O

(
ξ2), (p, ρ) ∈ Ca,

which prove the theorem. �

Under the hypothesis that in the stage of activation a nuclear system follows the
path of gentlest increase on a potential energy surface, at a symmetry-breaking simple
singular point a molecular system will prefer the branch that is associated with the loss
of symmetry. In the stage of relaxation it will prefer the branch that is associated with
the preservation of symmetry or the gain of some symmetry.

Definition. A simple singular pointz∗ = (p∗, ρ∗) ∈ E2 is called apitchfork bifurcation
point if the kernel vectorφ0 satisfies the following conditions:

(i) 〈φ0 | r〉 = 0,φ0h2pp(p∗, ρ∗)φ0φ0 = 0,
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Figure 2. Symmetry-breaking pitchfork bifurcation.

(ii) φ0h2pp(p∗, ρ∗)φ0v0 �= 0, wherev0 satisfies equation (19).

h2pp(p, ρ) is the second partial derivative of the functionh2 with respect to the position
vectorp.

Lemma 9 [16]. A symmetry-breaking simple singular point(p∗, ρ∗) ∈ E2 of the func-
tion h2 is a pitchfork bifurcation point if and only if there is a vectorφ∗ ∈ Pa, φ∗ �= 0,
such that(p∗, ρ∗, φ∗) is an isolated zero of the functionb :Ps × R× Pa �→ P0,

b(p, ρ, φ) =
( 〈φ | φ〉 − 1

h2(p, ρ)
H 2(p)φ

)
. (20)

The pattern that the setE2 shows in the vicinity of a symmetry-breaking simple
singular pointz∗ is depicted in figure 2. The consequences of proposition 2 and the
preceding lemma are summarized in

Theorem 10. Supposez∗ = (p∗, ρ∗) ∈ E2 and kerH 2(z∗) = span{φ0}, φ0 �= 0. If the
position vectorp∗ and the reaction vectorr are symmetric with respect toS ∈ S0 then

(a) z∗ is a turning point if and only ifφ0 ∈ Ps and〈φ0 | r〉 �= 0,

(b) z∗ is a pitchfork bifurcation point if and only ifz∗ is an isolated singular point and
φ0 ∈ Pa.

By virtue of lemma 8 the kernel vectorφ0 is either symmetric or antisymmetric
such that always〈φ0 | r〉 = 0 if φ0 ∈ Pa.

Definition. A double singular pointz∗ = (p∗, ρ∗) ∈ E2, p∗ ∈ Ps, is a symmetry-
breaking double turning pointif

(i) kerH 2(z∗) = span{φ0, φ1}, φ0 ∈ Pa, φ1 ∈ Ps,
(ii) 〈r | φ1〉 �= 0 and

(iii) φ0h2pp(p∗, ρ∗)φ0φ1 �= 0.
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Figure 3. Symmetry-breaking double turning point.

Through a symmetry-breaking double turning pointz∗ there is a symmetric branch
having a turning point atz∗ and there is a nonsymmetric branchCa ⊂ Pa×[0,∞) having
a bifurcation point atz∗; see figure 3.

Lemma 10 [16]. Let z∗ = (p∗, ρ∗) ∈ E2, p∗ ∈ Ps, be a double singular point of the
function h2 with kerH 2(z∗) = span{φ0, φ1}, φ0 ∈ Pa, φ1 ∈ Ps. Then(p0, ρ0, φ0) is
an isolated solution of equation (20) if and only ifz0 is a symmetry-breaking double
turning point.

5. Summary

In the present paper the equilibrial path concept introduced in [9] has further been
developed. Special attention is spent the symmetry conservation along equilibrial paths
and symmetry-breaking. Along regular equilibrial paths the symmetry is always con-
served if the reaction vector is symmetric. Symmetry-breaking can occur only at singu-
lar points. At a simple symmetry-breaking bifurcation point a nuclear system follows
a nonsymmetric branch in the stage of activation because the increase in the potential
energy is less along the nonsymmetric branches than along the symmetric branch. In
the stage of relaxation it follows the symmetric branch because the energy decrease is
greater along the symmetric branch than along a nonsymmetric branch. The simple bi-
furcation points are associated with valley–ridge inflection points.
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