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Potential energy surface exploration with equilibrial paths.
Part I: Theory
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The equilibrial path concept is further developed. Special attention is spent the symmetry
conservation along equilibrial paths and symmetry-breaking. Symmetry-breaking can occur
only at singular points. The simple singular points of an equilibrial path are valley—ridge
inflection points. In contrast to the intrinsic reaction paths and the gradient extremal paths, the
equilibrial paths enable to describe the branching of reaction channels.

1. Introduction

Within the classical transition state theory [1] the transition structure of a chem-
ical reaction is determined by a first order saddle point of the energy function. Educt
and product are associated with a minimizer. Thus each theoretical investigation of a
molecular system starts with the computation of the stationary points. Minimizers can
simply be determined by well-working descent procedures. But the computation of sad-
dle points is remained a hard task till today; see, e.g., [2,3]. Since only poor guesses are
available in general, saddle point searches calhfor-localnumerical procedures.

Besides the stationary points the valley-ridge inflection points are of particular
interest for the theoretical description of chemical reactions because they indicate the
branching of a reaction channel on the potential energy surface [4]. They are no distin-
guished points of the energy function or the energy derivatives. Therefore valley—ridge
inflection points can be detected only bgn-local search procedures; cf. [5] and the
literature cited therein. In general the educt and the product of a chemical reaction are
connected with some transition structure by two intrinsic reaction paths [6,7] which start
at the saddle point and lead to the educt and product minimizer.

The valley—ridge inflection points are no distinguished points of the intrinsic re-
action paths. Therefore they can only be detected by monitoring the eigenvalues of the
Hessian matrix along the path [8]. This procedure is, however, very expensive.

Very recently the concept of equilibrial paths has been proposed by the author [9].
Equilibrial paths enable to locate both minimizers and saddle points. At the same time
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they connect an educt with the transition structure or a transition structure with the prod-
uct. The valley—ridge inflection points are distinguished points at equilibrial paths. The
most important properties are the following:

(i) Equilibrial paths can start at a minimizer as well as a saddle point. An equilibrial
path that originates at a minimizer ends at a saddle point (or a plateau of the poten-
tial energy surface). An equilibrial path that starts at a saddle of qrdeads to a
stationary point of the ordd. — 1) in general.

(i) The initial search direction can be prescribed such that several saddle points sur-
rounding a given minimizer can be found.

(i) The simple singular points of an equilibrial path are valley—ridge inflection points.
The additional numerical effort necessary to detect these points is next to nothing.

Thus equilibrial paths are well suited for the exploration of large parts of potential
energy surfaces. They enable to gain an insight into the reaction topography.

In the present paper the concept of equilibrial paths is further developed. The equi-
librial path definition given in section 3 differs in some points from that in [9] because it
considers the observation that bifurcation points are not a rare, but a frequent occurance.
The common idea of a branching reaction channel (cf., e.g., [4]) is met for a certainty
only at the symmetry-breaking simple bifurcation points. In other words, valley—ridge
inflection points may also found in more general bifurcation situations.

Special attention is spent the conservation of symmetry and symmetry-breaking. In
section 4 it is proven that (under certain assumptions) along a regular equilibrial path the
symmetry of a nuclear system is conserved. Symmetry-breaking can occur only at singu-
lar points. In the vicinity of a symmetry-breaking simple bifurcation point the changes in
the potential energy are greater along the symmetric branch than along the nonsymmetric
branches. In other words, in the stage of activation the increase in the potential energy is
less if some symmetry is broken. In the stage of relaxation the decrease in the potential
energy is greater if the symmetry is preserved or some symmetry is gathered. Thus in a
stage of activation a nuclear system will follow a nonsymmetric branch at a valley-ridge
inflection point whereas in a stage of relaxation it will follow the symmetric branch.

In the second part the results of a potential energy surface exploration with equi-
librial paths are presented.

2. Background material

The position vectorg; = (pix, Piy, pi.)" € R® i = 1(1n, of then nuclei of
a molecular system are collected in a vecor= (p1,...,p,)". Thus each nuclear
configuration of a molecular system is described by a vector of the configuration space

P:={p|lp=(1....00)", pi € R i =1Dn}.
The vector spac® is endowed with the inner produét-),

n

(plg):=>) (pila). p.qeP,
i=1
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where(-|-) denotes the inner product &¥. A norm ||| is defined orP by

Ipll:=v{plp), peP.
SinceP is the Cartesian product &3-copies, a cross-product can be defineddy
dxp:=(ixps,....dy xpy)', d, peP.
Recall that orR® the cross-product can be written as
dxp=C()p
with the matrix
0 -—-ds d
C(d) := ( d3 0 _dl) , d=(d1,dr d3)".
—dy di 0
Thus
dxp=C@)p,

whereC (d) is the blocked diagonal matrix built up by th8, 3)-matricesC(d;), i =
1(Dn, i.e.,

C(d) := diag(C(dy), ..., C(d,)).

Since a nuclear ensemble can always be arrang@® iso that the barycenter of the
nuclei coincides with the origin, the nuclear configurations of a molecular system are
just described by the vectors of the subspace

Py := {pe]P

i=1

of P. Below nuclear configurations are always described by a vect®g.of he vectors
of the subspace

Lo(d):={p € Po | pi = 4d}, 0%#deR’
of Py represent the collinear configurations while the vectors of the direct sum
Lo(d1, dp) := Lo(dy) @ Lo(dz), di x dz#0,
represent the planar configurations. If the vectirs = 1(1)3, form a base ifR3, then
Po = LLo(d1) @ Lo(d2) @ Lo(da).
The vectors of the three-dimensional subspace

T:={deP|d=(d,....d)", di=d eR? i =1(Dn}
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of P describe the overall translations of a nuclear ensemidigirgince for anyp e Py
and anyd < T the inner productp | d) vanishes, the vector spaBeis the direct sum
of its subspaceBy andT, i.e.,

P=PyT.
The vectors of the subspace
S(p):={qeP|lg=dxp, deT}, peP,

of P describe the infinitesimal rotations of the configuratpabout an axigl. If p € Pg
thenS(p) C Py and dimS(p) = 3 for all non-collinear configurationg [9].

In the present paper the energy functionPEr> R is assumed to be thrice con-
tinuously differentiable. The gradient and the Hessian matrix of E at a poafP are
denoted byg(p) and H (p), respectively. Some important properties are summarized in
the next theorems.

Theorem 1 [9]. For anyp e P the following relations are valid:
(@) 9(p) € Py,

(b) 9(p) x p € Py,

(c) H(p)d =0vd € T,

(d) H(p)(d x p)=d x g(p)Vd € T.

Notice that statement (c) implidg (p)P C Py.

Theorem 2 [9]. For anyp € P, the following inclusions are valid:
() kerH(p) NPy < (T & S(g(p))*,
(b) H(p)(T®S@P)N* S (T®S(p)*.

Recall that" indicates the orthogonal complement of a subspade in

A point p, € P which satisfies the conditiog( p,) = 0 is astationary pointof the
energy function E. The set of all stationary points of E is denoted8y0). By virtue
of theorem 1(c), (d)

T+ S(p) CkerH(p) Vp e g *(0).

The kernel of a Hessian matr#l (p), which is denoted by kel (p), coincides with the
eigenspace that belongs to the zero eigenvalull @f). A point p € g~1(0) is called
pseudo-regulaif ker H(p) = T + S(p).

A stationary pointp, is asaddle point of ordek, £ > 1, if the Hessian matrix
H (p,) possessek negative eigenvalues. A stationary popy is a minimizerif there
is a neighborhood/(s of p, such that Ep,) < E(p) for all p € Us. At a minimizer all
eigenvalues of the Hessian matrix are non-negative.
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3. Concept of equilibrial paths

The equilibrial path concept, which is explained in detail in [9], requires the subdi-
vision of a reactive process into two stages: a stage of activation and a stage of relaxation.
The latter may consist of several substagestaye of activatiors characterized by the
eductm and an excitation vectar € (T & S(m))* which is associated with some vibra-
tional modes of the educt. A@bstage of relaxation igharacterized by a saddle point
structures and a transition vectar € (T @ S(s))*. Here the term transition vector is
used in a more general sense as is the convention. It is also defined for saddle points of
higher than first order. Thus transition vector means a linear combination of eigenvectors
or projected normal mode vectors that belong to a negative eigenvalue or a imaginary
frequency, respectively. Excitation and transition vectors are always normalized.

Within a stage of activation or a (sub)stage of relaxation the motion of a nuclear
ensemble is described by the equation [9]

2(p) (r (Pl ’2>p), ]l #0. 1)
o1 " B

The vectorr stands for an excitation vector if the equation is associated with a stage
of activation while it stands for a transition vector if equation (1) is associated with a
(sub)stage of relaxation. It is calledre@action vectorin the following. Theactivation
functiong, which is not specified here, is a non-negative, differentiable function which
is invariant with respect to the overall translations/rotations of a nuclear ensemble. Fur-
thermore it is required thai(p) = O for all stationary pointgp of E. The activation
function provides some activation powd denotes the mass hypermatrix.

The idea behind equation (1) is that within the semiclassical framework

Mp=—g(p) +

(i) each nuclear configuratiop is associated with some activation pow&€p) and

(i) the deformations of a nuclear skeleton are caused by two contrary acting forces,
namely aractivation forceand arelaxation force.

The activation force which is defined by the rightmost term in equation (1) gives rise to
bond fissions whereas the relaxation force which is given by the negative gradient of the
potential energy works towards bond preservation and bond formation.

3.1. Definition of equilibrial paths

The equilibrial paths are strict connected with the quasi-stationary solutions of
equation (1). Each poirip.,, p.), o« Z 0, of the set

& == {(p. p) € Po x [0, 00) | g(p) — pr = 0}
is associated with a family

p)=p,+wd, deT, |d|=o(p.)/p
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of quasi-stationary solutions of equation (1). Along a quasi-stationary solution the re-
laxation force and the activation force are balanced. Each ppin0) of the subset

Eo={(p.p) €&l p=0}
of &, is associated with a family
p(t)=p,+1td, decT\{0},

of stationary solutions of equation (1). Along a stationary solution the relaxation and
activation force vanish. The sé&} is the set of the boundary points &f. It is closely
related to the stationary points of the energy function E:

p € g’l(O) NPy < (p,0) € &.

The setf; is a subset of the zero setafyfunctionhy(-; b1, by, b3),

3

hi(z: b1, b2, b3) :=9(p) — pr + Y _(p | bi)bi. 2= (p.p),
i=1

where the vectors;, i = 1(1)3, are linearly independent vectorsTof

Lemmal [9]. For any baséb;}> ; of T
1= hy(0; b1, by, b3) N (P x [0, 00)).

Definition. A pointz € PxR is aregular point of a continuously differentiable function
h:P x R +— P if the Jacobian matrix’(z) = dh(z)/dz has maximal rank. A point is
calledsingularif it is not regular. The set of all regular points loiis denoted byR (h).

Proposition 1. A point z = (p,p) € P x R is a regular point of the function
h1(-; by, by, b3) if one of both conditions is fulfilled:

(i) kerH(p) NPy = {0},

(ii) there is a vectowg € Pg, vg # 0, such that keH (p) NPy = sparfvg} and
(vo|r) #0.

Proposition 1 results from the equation

3
Ny (z: by, bo. bs) = (H(p) +) bbl - r)
i=1
in conjunction with theorem 1(c).
By virtue of proposition 1 a poing € P x R is either a regular or a singular point of
all functionshy(-; by, b5, b3). The points of the se&f, are always singular points because
S(p) C kerH (p) NPy for all p € g~1(0) N IPo.
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Lemma 2. The setM := & N R(hy) is a one-dimensional manifold, i.e., the compo-
nents of M are diffeomorphic to either the unit circle or the open intexafl).

Lemma 2 is a consequence of the Global Rank Theorem; cf. [10, p. 176].
For any(p, p) € &1\& and anyd € T

(pldxr)=pHpldxgp)=-p{d|pxgp)=0
by theorem 1(b). Henc& \& C (S(r) & T)* x (0, o0). The vector space
P, := (S @ T)"
is a(3n — 6)-dimensional subspace B if

(R) the reaction vector includes two subvectons andr;, 1 < i, j < n, such that
i Xr; ;é 0.

If condition (R) is not fulfilled, i.e., all subvectors of the reaction vector are parallel,
then dimP, = 3n — 5; cf. [9].
The equilibrial path concept is based on the set

52 = 51 N (Pr X [0, OO))

which includes the one-dimensional manifold and some limit points of\1.

Definition. Each continuous curve(t) = (p(t), p(t)), T = 0, in the set; is called
anequilibrial path. If p(0) is a minimizer (saddle point) ther(z) is anactivation path
(arelaxation patf.

Equilibrial paths are no paths on potential energy surfaces. Along an equilibrial
path the relatiorp(r) = ||g(p(z))|| holds. Thus equilibrial paths are paths on surfaces
generated by the function(p) = ||lg(p)|l.

The set&; is contained in the zero set of the function

3

ha(z; b1, b2, b3) := hi(z; by, bo, b3) + Z(P | b; x r)(b; x p), z=(p,p).

i=1

The vectorsh; x p, i = 1(1)3, are linearly independent jf represents a non-collinear
configuration. The term added to the functiopexcludes all points of the sé&p which
do not belong to the vector spaex R, from the set;. This way the continuous curves
in the set€;\& which approach the boundary s&tare continued into the sép in a
unigue manner. The unigue continuability is of particular importance for the numerical
path tracing.

Lemma3. For any basé¢b;}® , of T

h;1(0; b1, b2, b3) N (P x [0, 00)) = &>
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The proof is omitted here because it follows the proof of [9, lemma 4.4].

Now the question is whether a regular point of a functet; b1, b, b3) remains
a regular point if the basg;}>_, of T is changed. To answer this question some infor-
mation about the Jacobian matrices of the functios(s; b4, b,, b3) is needed.

Foranyz = (p, p) € P, x R the Jacobian matrik}(z; b1, b, b3) has the form

hy(z; b1, b2, b3) = (Ho(z; b1, bp, b3)  —r), (2)
where
3 3
Ho(z: by, bp.bs) = H(p) + Y _bib| + ) (b x p)(bi x 7). 3
i=1 i=1

This observation proves

Proposition 2. A point z = (p,p) € P, x R is a regular point of the function
h,(-; by, by, b3) if one of both conditions is satisfied:

() Hy(z; by, by, b3) is a regular matrix,

(i) dimker Hy(z; b1, by, b3) = 1 andr ¢ rangeH »(z; b1, b», b3).

Considering theorem 1(d)

(i x p)b; x 1) =p~Lb; x p)(bi x 9(p))"
= p~Xbi x p)(H(p) b x p))'
=p Y (b: x p)(b; x p) H(p),
for all (p, p) € £5\&. Thus equation (3) results in

3

Ho(z; b1, b2, b3) = ) bib] + B,(p; b1, by, b3)H(p) @)
i=1

forz = (p, p) € E\&, where

3
B,(pib1.bo b3y :i=T+p ") (b x p)(b; x p)".
i=1

I denotes the identity matrix. Observe that the malfix(z; b1, b», b3) is symmetric for
all z € &\ &.

Proposition 3. Forp > 0

(@) B,(p; b1, by, b3) is a regular matrix,

(b) B,(p; b1, b2, b3) Po C Py,

(c) B,(p; b1,bs,b3)r =1 VpeP,.
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Proof. (a) Each vectow € PP can be written as a sum of a vector € S(p)* and a
vectorv, € S(p). Thus

3
B,(pi b1, b2, ba)v = v+ v+ p " Y _(b; x plva)(b; x p).
i=1
Hencev belongs to the kernel of the matr®, (p; b1, by, b3) if and only if v; = 0 and
v+ p L Z?Zl(b,» x plva)(b; x p) = 0. The last equation implies the condition

3
p=—lvall 2 (bi x plv2)* <O
i=1

which is a contradiction to the assumptipn> 0. ThusB ,(p; b1, b», b3) is a regular
matrix for all p > 0.

(b) If v € Py thenB,(p; b1, by, b3)v € Py becauseh; x p € Py, i = 1(1)3, for
p € Po.

©If peP. thenib; x p|r)=—(b; xr| p)=0,i =11)3. Therefore
Bp(p; bl,bz, b3)r:r. Il

The next lemma answers above question.

Lemmad. If z = (p, p) € & then for any baséb;}> , of T
kerhy(z: by, b2, b3) = {(v, u) € P, x R | H(p)v = pr}.

Proof. The kernel of the Jacobian matii%(z; b1, by, b3) consists of all vectory =
(v, u) € P x R which fulfil the equation

h5(z; b1, b2, b3)y = 0. (5)
() z € &N &. Considering equation (2) the equation
3 3
0= (H(p)v—pur)+ Y (bi | v)bi + > (b x r | v)(b; x p) (6)
i=1 i=1

results from equation (5). BecausE(p)v € (T @ S(p))* for anyv € P by theorem
1(c), (d), the right hand side of equation (6) vanishes if and only if the three terms vanish
simultaneously. In other wordgp, 1) belongs to keh(z; b1, b2, b3) if and only if
H(p)v — ur =0andv € P,.

(i) z = (p, p) € E2\&o.

Considering equation (4) and proposition 3(c) the equation

3
0= ) (bi | v)bi + B,(p; b1, bz, b3)(H(p)v — pur)
-1

i
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is obtained from equation (5). Because of proposition 3(b) both right hand terms vanish.
By virtue of proposition 3(a) the matriceB,(p; b1, b, b3) are regular, such that the
equivalence relation

(v, ) € kerhy(z; by, by, b3) <= (H(p)v — ur =0) Av € Py
is valid. If © # 0 then by theorem 1(b), (d)
O=(rxpld)=p{dxp|Hppw)=un{dxgp) v
=ppu Hd xr | v)

for anyd € T. Hencev € P,. If u = 0 thenv € P, by theorem 2(a). This observation
completes the proof. O

A consequence of lemma 4 is that a paing & is either a regular or a singular
point ofall functionshy,(-; b1, by, b3). Thus the set

Eeg:={z € &1 7 € R(ha(:; by, b2, b3))}

is well defined. An equilibrial path is calleggular if it is contained in the sef;eq.
The next lemma supplies information about the dimension of the set of singular
points. It is a consequence of Sard’s lemma; cf. [10, p. 186].

Lemmab. The set,\ &g has the Lebesgue measure zero.

Unless otherwise said, below the base= (u;, ..., u;)T,i = 1(1)3, is chosen for
the subspac@, where
up = (1,007, u, =(0,1,0)", us=(0,0,1)".
For simplicity we writeh, instead oth,(-; u1, u,, us), H,(z) instead of
H,(z; uy, uy, us), etc. in the following.

3.2. Some properties of equilibrial paths

In the present subsection some basic properties of the equilibrial paths are proven.
Particularly it is shown that the regular equilibrial paths coincide with certain trajectories
of an ordinary differential equation.

Definition. If z is a regular point of the functioh, then the unique solution of the
system of equations

hy(z)t =0, )
el =1, (8)
sign det( h%(Tz) ) =v = const 9)

is called thetangent vectomduced by the matrik’(z). It is denoted by, (h5(z)).
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The solutione(s) = (p(s), p(s)) of the initial value problem

z = t,(h}(2)), v = const (10)
z(0) = zo, 20 € greg’ (11)

is a curve of regular points in the zero $P;(1(0); cf. [11]. If v = 1, the trajectory
follows the positive direction. It follows the negative directionvi= —1. By virtue of
condition (8) the solution curved(s) are parametrized with respect to the arclength
The following theorem results from [12, lemma 2.1.12].

Theorem 3. Each regular equilibrial path is a segment of a solution curve of the initial
value problem (10)—(11).

Thus the sekeq consists of regular equilibrial paths and single regular paints
& which are a turning point of a curve contained in thergét(O) N (Pg x (—o0, 0));
see figure 1.

If zo € & N Ereq, the solution curve of the initial value problem (10)—(11) includes
an equilibrial path ifo(0) > 0, i.e., if the initial tangent belongs to the &&tx (0, co).
If 6(0) = 0, the solution curve need not include an equilibrial path. In figure 1 the point
Zx € & N Eeg With z,. = (p,, 0) determines a trajectory which is completely contained
in the sefP, x (—oo, 0]. The equation [11]

) h5(2) _ _
1Y det(tv(h/z(Z))T> - detHZ(p)v Z = (p’ IO)7 (12)

shows in conjunction with condition (9) that

p(0) >0 ifv=signdetH,(py) # 0.

T~

// /

Figure 1. Zero set of a functiam.

4
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Thereforev = sign detH »(p,) is chosen from now on. The lower indexof the
tangent vectors is omitted below. The next lemma provides a condition which guarantees
that a matrixH »(zo), zo € &o, IS regular.

Lemma6. Supposezo = (pg, 0) € &. Then the matrixH »(zo) is regular if both
conditions are satisfied:

(i) The Hessian matrid (p,) is pseudo-regular.
(i) The matrix
(up X polus xr) (uyx poluzxr) (ugxpylusxr)
U(po.r) == | (2 X polusxr) (uzx poluzxr) (uzx poluszxr)
(uz x poluy xr) (uzx poluzxr) (uzx pylusxr)
is regular.
If the matrixU(p, r) is singular then the matrikl »(zo) is also singular.

Proof. For each vectow € P there are a vector; € S(py)* and a vector, =
(d x pg) € S(pg) such thaw = vy + v, and

3 3
H(zo)v = (H(PO) + Zuiu;—) v+ ) (i x 1| v)@ x po). (13)

i=1 i=1

The first term of the right hand side is a vectoiSgp,)* while the rightmost term
is a vector ofS(py). If v # O0thenH,(py)v # 0 because of condition (i). i, = 0
thenH,(py)v # Ofor v # Oif and only if

(C) for each vectodd € T, d # 0, there is an index,, 1 < i, < 3, such that
(u;, xr|dx pg) #0.
Since ford = Y°3_, yju;

w

(uiXr|d><Po>=ZVj<uiX"|“jXP0>’
=1

condition (C) is fulfilled if and only if the right hand side of the equation
U(po, 1) (V1. 72, v3) | = (a1, a2, 03) ', o = (u; x r | d x p),

differs from zero for all non-vanishing vecto¢s:, y2, y3) ' € R3. In other words, con-
dition (C) is fulfilled if and only if the matriXxJ(p,, r) is regular.

If the matrixU(py, r) is singular, then there is a vectady € kerU(pg, r), d. # 0,
for whichd, x p, € kerHy(z0), d, = (dy, ..., d,)". O

If the initial configurationp,, is collinear or planar, then the matrfl,(zo) is al-
ways singular if the reaction vector is chosen in a special manner.

Proposition 4. Supposeg = (py, 0) € & and(r | py) = 0.
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(@) If r € Lo(uy, up), then the cross-produat; x p, belongs to the kernel of the matrix
H(zp), i.e., Hx(zg) is singular.

(b) If r € Lo(u3), thenu; x py € kerH(zo) for j =1, 2.

Proof. By virtue of equation (13) a vectar; x p, belongs to the kernel of the matrix
H(zp) ifand only if (u; x py | u; x r) = 0 fori = 1(1)3. Considering Lagrange’s
identity [13]

(uj x polu; xr)y=(u;u)(polr) _Z<p0k | ug) (e | uj).
k=1
If r € Lo(ug, up), then(r, | uz) = O for all subvectors,. On the other hand, if <
Lo(ug), then(r, | uj) =0fork = 1(1)n andj =1, 2. O

Each planar configuration possessges3 vibrational modes that act perpendicular
to the plane in which the nuclei are lying [9]. By virtue of proposition 4 the accompany-
ing normal mode vectors are an unsuitable choice for the reaction vector.

Theorem 4. A regular, non-closed equilibrial path of finite length either ends at a point
of the boundary sef, or converges to a singular point of the function

Proof. Suppose the equilibrial patf{s) is a segment of the solution cureés) of the
initial value problem (10), (11). Leta, b), a < 0 < b, be the maximal interval of
existence of the solution curugs). If b < oo then the curve(s) converges to a limit
pointz, ass — b, s < b which is a singular point of the functidm, [11]. The maximal
interval of existence of the equilibrial patfis) is contained in the intervak, b).

Case 1 The solution curve(s) does not leave the sBt x [0, o) fors > 0, i.e.,
z(s) € P, x (0, 00) for all s > 0. Sincez(s) is of finite length by assumption(s) is a
closed curve or it converges to a singular point of the fundtigrBut closed curves are
excluded by assumption.

Case 2 The solution curve(s) leaves the sek, x [0, oo) (for the first time) at the
point ¢(s,) € &. Then the equilibrial patla(s) is of finite length and ends at the point
c(sy). O

Equilibrial paths of infinite length occur when the pailis) runs into a domain
where the energy surface is almost flat (plateau of an energy mountain).

Definition. An equilibrial pathz(s) that joins two pointgo andz; of the set, is called
proper if
() z(s) is aregular equilibrial path,
(ii) the pointszg andz; are the only curve points that belongédg
(iii) detHy(z;) #0,i =0, 1.
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Theorem 5 [9]. Supposez(s) = (p(s), p(s)) is a proper equilibrial path that starts at
the pointzo = (py, 0) and ends at the poirt = (p4, 0).

(@) If pgis a minimizer therp, is a saddle point or a maximizer.
(b) If pyis a saddle point thep, is also a saddle point or a minimizer.

A proper equilibrial path that originates at a minimizer need not end at a saddle
point of first order.
Along a regular equilibrial patb(s) = (p(s), p(s)) the relation

dE
ELD _(o(ps)) 1 b)) = p6)r | 50)

= p(s) COSp(s)v/ 1 — p2(s) (14)

holds, wherep(s) denotes the angle between the reaction vectomd the tangernp (s).

Thus the potential energy is a monotonically increasing (decreasing) function along the
pathp(s) as long as the condition cggs) > 0 (cosp(s) < 0) is fulfilled. A curve point

p(s,) at which the inner produgtr | p(s.)) vanishes is a minimizer, a maximizer, or an
inflection point of the function BEp(s)).

Theorem 6 [9].Supposez(s) = (p(s), p(s)) is a regular equilibrial path along which
cosp(s) # 0 for all s.

(a) If the initial point p(0) is a minimizer then the potential energy is monotonically
increasing along(s).

(b) If the initial point p(0) is a saddle point then the potential energy is monotonically
decreasing along(s).

3.3. Distinguished points at equilibrial paths

Distinguished points at a regular, non-closed equilibrial path of finite length are the

initial point, the turning point(s) and the final point. By theorem 4 the final point is either

a singular point (which is not a point of the path but only a limit point) or a regular point

of the boundary sef,. The first turning point encountered along a regular activation
path indicates the entry into the reactive domain [9]. A regular relaxation path that ends
at a minimizer enters the product valley at the turning point encountered at last. The
singular points are of particular interest because they are connected with the branching
of reaction channels.

Definition. A point z, = z(s,) of a regular equilibrial patlz(s) = (p(s), p(s)) is a
turning pointif the derivativep(s) changes its sign at.

By virtue of equation (12) the matrik ,(p) becomes singular at a turning point.
Because turning points are regular points of the fundtigrcase (b) of proposition 2 is
met at a turning point.
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Theorem 7 [9]. Each regular equilibrial path that joins two points of the boundargset
possesses at least one turning peipt= (p,,, p:,). At z,, one and only one eigenvalue
of the Hessian matrid (p,,) changes its sign.

Definition. A singular pointz, € P, x R of the functionh, is called simple if
dimkerH,(z,) = 1. The pointz, is adoublesingular point if dim ket »(z,.) = 2.

If z, is a simple singular point then the vector that spans the kernel of the matrix
H,(z,) is perpendicular to the reaction vector by proposition 2. The simple singular
points of the functiorh, are closely related to the valley—ridge inflection points.

Definition [4]. A non-stationary poinp,, is avalley—ridge inflection poinif

dim(kerH(p,) N\Po) =1 and g(p,) € (kerH(p,))".

Lemma?7. If the pointz, = (p,, px) € E2\& is a simple singular point of the function
h, then p, is a valley-ridge inflection point.

Proof. The relation
kerHy(z) = kerH(p) NPo, z = (p, p),
results from equation (4) in conjunction with proposition 3(b). Thus
dim(kerH (p,) NPo) = dimkerHy(z,) = 1.
Sincez, € &, the gradieng(p,) = p.r belongs taker H(p,))*. a

4. Symmetry

The symmetry of a nuclear ensemble is described by a regular blocked matrix

S11 ... S,
Su1 .- S

which satisfies the following assumption:

(S) Forany indexi, 1 < i < n, there is an indey,, 1 < j. < n, suchthats;;, =S €
O3 ands;; = Oforall j # j,.

O(3) is the group of the orthogon&B, 3)-matrices. The set of alBr, 3n)-matrices
which satisfy assumption (S) is denoted®y
By differentiating the equation

E(p) = E(Sp)
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the following identities are obtained:
g(Sp) = S9(p), H(Sp) = SH(p)S".

Definition. A vector p € P is called symmetricwith respect to a matrix§ € S if
Sp=rp.
The symmetric matrices & are collected in the subset
So:=1{SeS|8$* =1}

of S. Since the eigenvalues of a mat§xe Sy equal either 1 o1, for each matrix
S € Sp there exist two eigenspaces, namely the subspaces

Pi:={peP|Sp=p} and P,:={peP|Sp=—p)}

of P. The vectors o, are calledantisymmetriavith respect to the matri§. Since any
two non-vanishing vectorp € P; andq € P, are orthogonalP is the direct sum of the
subspace®, andP,,

P=P®P,.

Proposition 5. For any two vectors, p € R? the following relation is valid:
S(d x p) = detS(Sd x Sp), S e O®J).
Proof. SinceS(d x p) = [SC(d)S"]Sp andSd x Sp = C(Sd)Sp, it suffices to prove
that
C(sd) = (detS)SC(d)S . (15)

Let s; be theith row of the matrixS. Then the following straightforward calculation
proves equation (15):

SC(d)ST =S(d x s1d x sy d X S3)
(s1]dxsy) (s1|dxsz) (s1]dxsg) ~
=<<32|d><31) (s2 | d x sp) (32|dX33)>=C(d),
(s3] dxsy) (sg|dxsz) (s3]dxsg)

where
_ (s2xs3)" (s2xs3)"
d= ((33 X sl)T) d= ((33 X sl)T) S'sd = (detS)Sd.
(s1xs2)" (s1xs)"
Recall that(s; | s, x s3) = detS; cf., e.g., [13]. O

Proposition 5 proves the identity

S(d x p) = detS(Sd x Sp), S € So. (16)
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Proposition 6. Supposep, € Py is a stationary point witlt;-symmetry. If the reaction
vectorr is C-antisymmetric, them ; x py € kerHz(zo), j = 1, 2, wherezg = (po, 0).

Proof. Without loss of generality we may assume that the plane of reflection is spanned
by the vectorsu; andu, such thats = diag(1, 1, —1). By virtue of equation (16) the
vectorsu; x pg, i = 1, 2, are antisymmetric whereas the veatgrx p, is symmetric.

On the other hand the vectars x r,i = 1, 2, are symmetric while the vectag x r is
antisymmetric. Thus

Hy(zo)(uj x pg) = (w3 xr |uj x po)(us x pg), j=12
cf. equation (13). It is easy to verify that

(wgxr|ujx po)=—Y (poc |us{re |u;), j=12
k=1
If {(pox | uz) # 0O then there is an indexsuch that{pg, | us) = —(po: | us) because
of the Cs;-symmetry. On the other hang, | u;) = (r; | u;) for j = 1,2, sincer is
antisymmetric. Thusuz x r | u; x py) =0forj =1,2. a

4.1. Symmetry conservation

In the present subsection it is proven that along a regular equilibrial path the sym-
metry is conserved if the reaction vector is symmetric. For the proof the following
proposition is needed:

Proposition 7. If the reaction vector is symmetric with respect to the matrf e S,
then

Sha(p, p: b1, b2, b3) = ho(Sp, p; Sb1, Sby, Sb3). (17)
The proof is straightforward. Therefore it is omitted.

Theorem 8. Supposez(s) = (p(s), p(s)) is a regular equilibrial path that starts at the
pointz(0) = (pg, 0) € & N Ereg If pg is Ssymmetric and the reaction vectohas the
same symmetry ag,, then the symmetry is conserved along the cyr¢s).

Proof. The curvep(s) of an equilibrial pathz(s) = (p(s), p(s)) is the limit of a se-
quence of Euler polygong_(s), = € (0,8), § < 1; cf. [14]. Thus the symmetry is
conserved along(s) if this property holds for all Euler polygor, (s). Along an Euler
polygon the symmetry is conserved if all nodes

Pk+1=Pk+TiJk, k=0,1,...,

are symmetric. Thus it remains for us to prove that a tangerns symmetric if the
configurationp,, is symmetric.
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Along an equilibrial path the tangent vecta(§,(z; b1, b, b3)) = (p, p) " satisfy
the equation

hy(p, p: b, b, bs) (‘Z ) o (18)

By differentiating equation (17) the equation

/ / S 0
hz(p7 :0’ blv b27 b3) - SThZ(Sp7 107 Sb17 Sb27 Sb3) (OT 1)

is obtained and equation (18) can be rewritten as follows:

/ s 0\ /(i
SThy(Sp. p: Sby, Sba, Sbs) (oT 1) (’,’) —o0.
0

If pis symmetric, then

(3 D0)=2) vemo

by lemma 4. HencsSp = up andp = up. The proof is complete if we have shown
thatu = 1.

If p # 0thenu equals 1. Ifp = 0 thenz = (p, p) is a turning point of the
equilibrial path and case (b) of proposition 2, which impleg p) # 0, is met. Since
lpll = 1 by equation (8), the relation

0 u(r | p)=(r|Sp)=(S"r|p)=(r|p)
shows thajt = 1. O

4.2. Symmetry-breaking

Only symmetries that are described by a maSixe Sy are considered in the
present section. The reaction vectois assumed to be symmetric. Beca$§e C T,
the vectorsh;, which form the base of, can always be chosen so th&h; = +b;,

i =1(1)3.

Lemma 8. Suppose the reaction vectoland the position vectgp are symmetric with
respect to the matri§ € Sp. If A is a single eigenvalue of the matti,(p; b1, bo, b3),
Sh; = +b;, then the eigenvector belongingtas either symmetric or antisymmetric.

Proof. A straightforward calculation shows that
SH(p; b1, bz, b3)S = H(Sp; b1, by, b3).
If vis the eigenvector that belongs to the eigenvaltleen

AV = Hz(p; b1, by, bg)v and ASv = Hz(p; b1, b, bg)Sv
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such thatSv = pv. Because the matri§ has only the eigenvalues 1 ardl, the
eigenvectomw is either symmetric or antisymmetric. a

At a simple singular point, = (p,, px) of the functionh, the kernel of the matrix
H(z,) is spanned by a non-vanishing vecty € P which is called sernel vector
A kernel vector is always perpendicular to the reaction vector by proposition 2. By virtue
of lemma 8¢y is either symmetric or antisymmetric. Furthermore there is a (uniquely
determined) vectovg € P; which satisfies the equation

HZ(Z*)UO =r. (19)

Definition. A simple singular poink,. = (p,, p.) € & with symmetricp, is called
symmetry-breaking ker H,(p,) C P,.

At a symmetry-breaking simple singular point = (p,, p.) the set&, con-
sists locally of two smooth transversally intersecting brancies; P; x [0, co) and
C, C P, x [0, 00), with the following representation [15]:

Co={(p.p) €& p=p,+Evo+wi&), p=p.+§&, €] <5},
Co={(p.p) €21 p=p.+Ebo+waf). p=p.+OE, [E] <5},

where|lw; (§)|| = O(?),i = 1, 2.

Theorem 9. In the vicinity of a simple symmetry-breaking singular poite &, the
changes in the potential energy are greater along the symmetri€ ptithn along the
antisymmetric patid, .

Proof. At the pointz, = (p,, p.) € & the Taylor expansion of the energy function E
provides the relations

E(p) — E(p,) = pi(E(r | vo) + (r | w1(§))) + O(%) = O), (p, p) € Cy,
E(p) — E(p,) = pu{r | w2(8)) + O(£%) = O(£%), (p.p) €Ca,
which prove the theorem. a

Under the hypothesis that in the stage of activation a nuclear system follows the
path of gentlest increase on a potential energy surface, at a symmetry-breaking simple
singular point a molecular system will prefer the branch that is associated with the loss
of symmetry. In the stage of relaxation it will prefer the branch that is associated with
the preservation of symmetry or the gain of some symmetry.

Definition. A simple singular point, = (p,, px) € &, is called apitchfork bifurcation
pointif the kernel vectokp, satisfies the following conditions:

(I) <¢0 | r) = 01 ¢0h2pp(p*v ,0*)¢O¢O = 01
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Figure 2. Symmetry-breaking pitchfork bifurcation.

(i) @ohzpp (P, p)Povo # O, Wherevg satisfies equation (19).

h2,,(p, p) is the second partial derivative of the functibpwith respect to the position
vector p.

Lemma9 [16]. A symmetry-breaking simple singular poifp,, p.) € &, of the func-
tion hy is a pitchfork bifurcation point if and only if there is a vectoy € P,, ¢, # O,
such that(p,, p«, ¢.) is an isolated zero of the functidn P; x R x P, — Py,

@lo)—1
H>(p)¢

The pattern that the séb shows in the vicinity of a symmetry-breaking simple
singular pointz, is depicted in figure 2. The consequences of proposition 2 and the
preceding lemma are summarized in

(20)

Theorem 10. Supposez, = (p,, p«) € &2 and kertH »(z,) = spar¢o}, ¢po #Z 0. If the
position vectorp, and the reaction vectarare symmetric with respect € Sp then

(a) z. is aturning point if and only ifhg € P; and{¢g | r) # O,
(b) z. is a pitchfork bifurcation point if and only i, is an isolated singular point and
¢0 (S Pa.

By virtue of lemma 8 the kernel vectgy, is either symmetric or antisymmetric
such that alwayspg | r) = 0if ¢g € P,.

Definition. A double singular point, = (p,,p.) € &, p, € Py, is asymmetry-
breaking double turning point
(i) ker Ha(z.) = sparigo, ¢1}, ¢o € Py, ¢1 € Py,
(i) (r|¢1) # 0and
(”I) ¢0h2pp(p*’ p*)¢0¢l 7& 0.
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Figure 3. Symmetry-breaking double turning point.

Through a symmetry-breaking double turning painthere is a symmetric branch
having a turning point ag, and there is a nonsymmetric brar¢hc P, x [0, co) having
a bifurcation point at,; see figure 3.

Lemmal0 [16]. Letz, = (p,, p«) € &, p,. € Py, be a double singular point of the
function h, with ker H,(z,.) = sparigo, ¢1}, ¢o € P,, ¢1 € Ps. Then(pg, po, ¢o) is
an isolated solution of equation (20) if and onlyzi is a symmetry-breaking double
turning point.

5 Summary

In the present paper the equilibrial path concept introduced in [9] has further been
developed. Special attention is spent the symmetry conservation along equilibrial paths
and symmetry-breaking. Along regular equilibrial paths the symmetry is always con-
served if the reaction vector is symmetric. Symmetry-breaking can occur only at singu-
lar points. At a simple symmetry-breaking bifurcation point a nuclear system follows
a nonsymmetric branch in the stage of activation because the increase in the potential
energy is less along the nonsymmetric branches than along the symmetric branch. In
the stage of relaxation it follows the symmetric branch because the energy decrease is
greater along the symmetric branch than along a nonsymmetric branch. The simple bi-
furcation points are associated with valley-ridge inflection points.
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